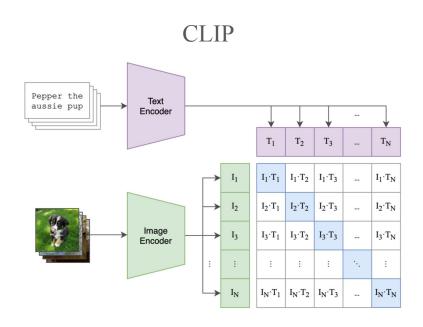
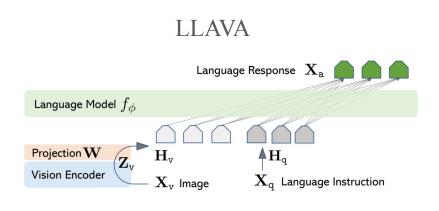
How to use text for image restoration

Donghun Ryou dhryou@snu.ac.kr

2024.01.10

Multimodal models' advancements

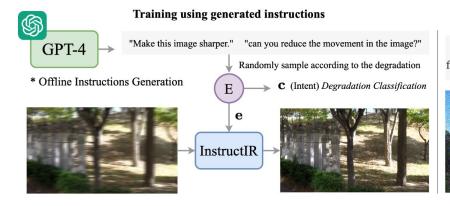




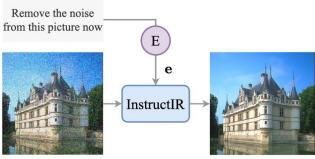
Usage of text in low-level vision:

- 1. Provide guidance in multi-task scenarios (e.g., all-in-one solutions) to decide which task to perform.
- 2. Offer clear guidance for ill-posed problems.
- 3. Serve as a simpler representation that can assist in complex image restoration tasks.
- 4. Leverage text's robust features

2023 ECCV



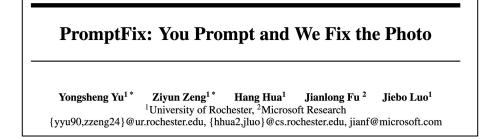
Inference using user instructions



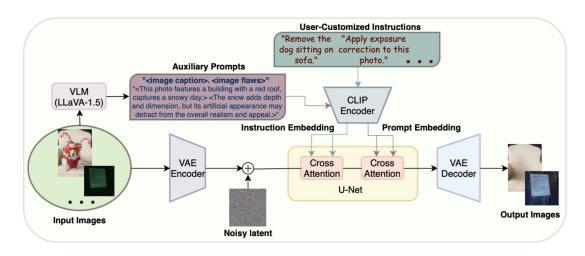
• Single model can perform various low-level vision tasks in a controllable manner.

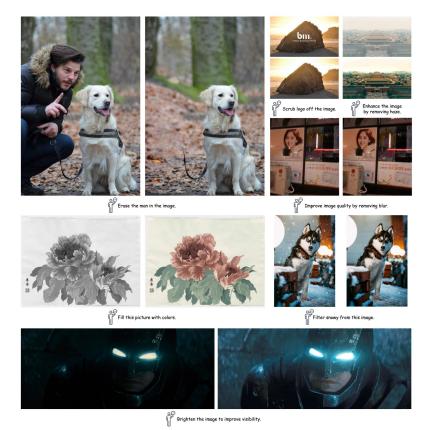
Input

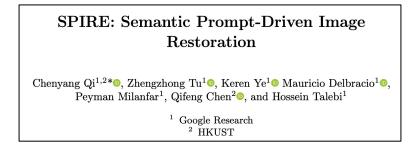
(1) "My image is too dark, fix it" \longrightarrow (2) "Apply a tonemap"



2024 NeurIPS







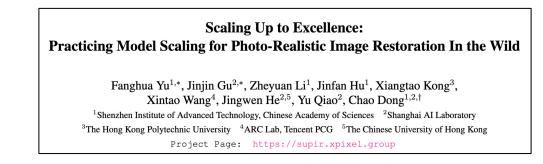
Restoration Prompt: "Deblur with sigma 0.4; Denoise with sigma 0.08..."

Resize Noise JPEG

Ground Truth x P(skip)=0.5Semantic Prompt: "A very large giraffe eating leaves"

Output \hat{x}

2024 ECCV



2024 CVPR

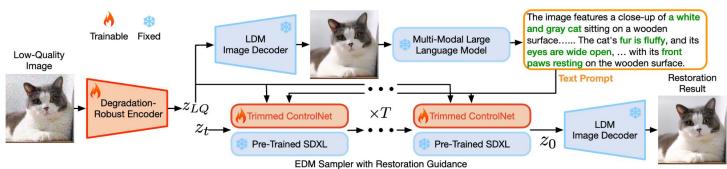


Figure 2. This figure briefly shows the workflow of the proposed SUPIR model.

(b) Controllable Image Restoration with Textual Prompts

Low Quality Input

No Prompt at the end of ...

Low Quality Input Text: woman with

a suede hat.

a denim hat.

Low Quality Input Text: ... shows an

old man ... young man ...

Usage of text in low-level vision:

3. Serve as a simpler representation that can assist in complex image restoration tasks.

Improving Image Restoration through Removing Degradations in Textual Representations

Jingbo Lin¹, Zhilu Zhang¹, Yuxiang Wei¹, Dongwei Ren¹, Dongsheng Jiang², Wangmeng Zuo^{1,*}

¹Harbin Institute of Technology ²Huawei Cloud Computing Co., Ltd.

jblincs1996@gmail.com, cszlzhang@outlook.com, yuxiang.wei.cs@gmail.com, rendongweihit@gmail.com, dongsheng_jiang@outlook.com, cswmzuo@gmail.com

2024 CVPR

4. Leverage text's robust features

Beyond Pixels: Text Enhances Generalization in Real-World Image Restoration

Haoze Sun 1 Wenbo Li 2* Jiayue Liu 1 Kaiwen Zhou 2 Yongqiang Chen 3 Yong Guo 2 Yanwei Li 3 Renjing Pei 2 Long Peng 4 Yujiu Yang 1* 1 Tsinghua University 2 Huawei 3 CUHK 4 USTC shz22@mails.tsinghua.edu.cn fenglinglwb@gmail.com

12.01.2024 Arxiv

Improving Image Restoration through Removing Degradations in Textual Representations

Improving Image Restoration through Removing Degradations in Textual Representations

Motivation in this paper

- text is loosly coupled with content, easy to remove degradation
 - o ex. "a scene of *" \longleftrightarrow "a rainy scene of *"

My opinion...

generated "content-related clean prior" is the key

Method

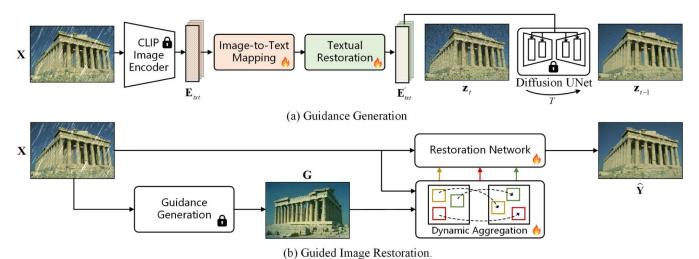


Figure 2. Illustration of the proposed pipeline. (a) We sequentially train image-to-text mapper \mathcal{M}_{i2t} and textual restoration module \mathcal{M}_{clean} to convert image concepts into textual representations and remove textual degradation information, respectively. (b) The guidance image is used to assist the image restoration process.

- 1. How to generate content-related, degradation-free images
- 2. How to guide restoration

Degradation-Free Guidance Generation

Using Stable Diffusion as the text-to-image generation model.

$$L_{LDM} = \mathbb{E}_{\mathbf{z} \sim \mathcal{E}(\mathbf{X}), \mathbf{p}, \epsilon \sim \mathcal{N}(0,1), t} \Big[\| \epsilon - \epsilon_{\theta}(\mathbf{z}_{t}, t, \boldsymbol{\tau_{\theta}^{t}(\mathbf{p})}) \|_{2}^{2} \Big],$$
(1)

 ϵ : noise, t: timestep, z: latent, τ : CLIP text encoder, p: text

Training 2 models (MLP)

$$\mathbf{E}_{txt} = \mathcal{M}_{i2t}(au_{ heta}^i(\mathbf{X})), \ \ X: ext{image, } au: ext{CLIP image encoder}$$

$$\mathbf{E}'_{txt} = \mathcal{M}_{clean}(\mathbf{E}_{txt}),$$

Degradation-Free Guidance Generation

$$L_{LDM} = \mathbb{E}_{\mathbf{z} \sim \mathcal{E}(\mathbf{X}), \mathbf{p}, \epsilon \sim \mathcal{N}(0,1), t} \Big[\| \epsilon - \epsilon_{\theta}(\mathbf{z}_{t}, t, \tau_{\theta}^{t}(\mathbf{p})) \|_{2}^{2} \Big], \tag{1}$$

Training sequentially

1. $\mathbf{E}_{txt} = \mathcal{M}_{i2t}(\tau_{\theta}^{i}(\mathbf{X})),$

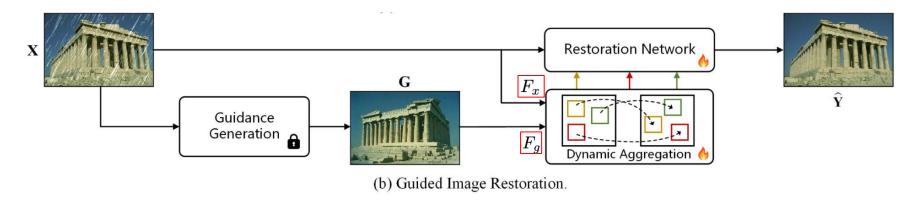
X : degraded or clean image, z : corresponding degraded or clean image's latent vector

2. $\mathbf{E}'_{txt} = \mathcal{M}_{clean}(\mathbf{E}_{txt})$

X : degraded image, z : paired clean image's latent vector

• Restore implicite textual representations for faithful reconstruction

Guided Restoration



 F_x : degraded image's multi-scale features, F_g : generated image's multi-scale features

search useful feature based similarity score

$$\mathbf{F}_x = \mathbf{F}_x + \alpha \cdot \mathcal{B}([\mathbf{F}_x, \hat{\mathbf{F}}_g]),$$

 \mathcal{B} : one CNN-based block or transformer-based block, α : hyper-parameter

Effect of Textual Restoration

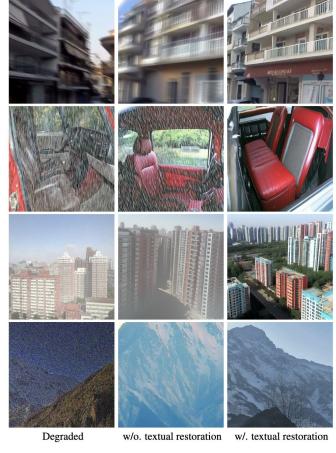


Figure A. Visual comparison of w/o. textual restoration and w/. textual restoration.

Explicit Textual Restoration v.s. Implicit Textual Restoration

Figure B. Visual comparison of synthetic guidance by explicit and implicit textual representation on image deblurring task.

Examples of generated images for guidance



Table 1. All-in-one image restoration results. Following PromptIR [73], we train and evaluate the proposed method in all-in-one image restoration task, our method outperforms PromptIR across all the benchmark datasets.

Mal	Dehazing	Derain	Denoise on BSI	
Method	on SOTS	on Rain100L	$\sigma = 15$ $\sigma = 25$	$\sigma = 50$
BRDNet [91]	23.23/0.895	27.42/0.895	32.26/0.898 29.74/0.836	26.34/0.836 27.80/0.843
LPNet [34]	20.84/0.828	24.88/0.784	26.47/0.778 24.77/0.748	21.26/0.552 23.64/0.738
FDGAN [33]	24.71/0.924	29.89/0.933	30.25/0.910 28.81/0.868	26.43/0.776 28.02/0.883
MPRNet [113]	25.28/0.954	33.57/0.954	33.54/0.927 30.89/0.880	27.56/0.779 30.17/0.899
DL [28]	26.92/0.391	32.62/0.931	33.05/0.914 30.41/0.861	26.90/0.740 29.98/0.875
AirNet [51]	27.94/0.962	34.90/0.967	33.92/0.933 31.26/0.888	28.00/0.797 31.20/0.910
PromptIR [73]	30.58/0.974	36.37/0.972	33.98/0.933 31.31/0.888	28.06/0.799 32.06/0.913
Ours	31.63/0.980	37.58/0.979	34.01/0.933 31.39/0.890	28.18/0.802 32.56/0.916

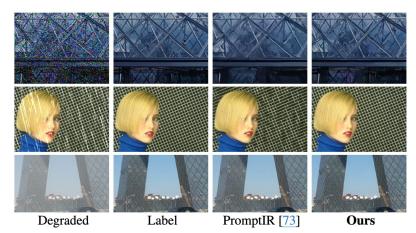


Figure 3. All-in-one image restoration results. Top: image denoising, mid: image deraining, bottom: image dehazing.

Table 2. Motion image deblurring results. We train models with GoPro training data. We evaluate our method on GoPro, HIDE, RealBlur benchmark datasets. PSNR and SSIM scores are calculated on RGB-channels.

Method	GoPr PSNR↑	o [<u>68]</u> SSIM†	HIDI PSNR↑		RealBlu PSNR↑	ı r-R [<u>81]</u> SSIM↑	RealBlu PSNR↑	ır-J [<u>81]</u> SSIM↑
DBGAN [121]	31.10	0.942	28.94	0.915	33.78	0.909	24.93	0.745
MT-RNN [70]	31.15	0.945	29.15	0.918	35.79	0.951	28.44	0.862
DMPHN [116]	31.20	0.940	29.09	0.924	35.70	0.948	28.42	0.860
SPAIR [74]	32.06	0.953	30.29	0.931	-	-	28.81	0.875
MIMO-Unet+ [19]	32.45	0.957	29.99	0.930	35.54	0.947	27.63	0.837
IPT [13]	32.52	_	_	-		-	-	-
MPRNet [113]	32.66	0.959	30.96	0.939	35.99	0.952	28.70	0.873
HINet [14]	32.71	0.959	30.32	0.932		-	-	-
Uformer [95]	32.97	0.967				-	-	-
Restormer [114]	32.92	0.961	31.22	0.942	36.19	0.957	28.96	0.879
Ours-Restormer	33.11	0.962	31.26	0.943	36.47	0.959	29.17	0.875
NAFNet [15]	33.69	0.966	31.32	0.943	33.62	0.944	26.33	0.856
Ours-NAFNet	33.97	0.968	31.57	0.946	33.87	0.950	26.76	0.861

Table 3. **Defocus image deblurring results**. We train and evaluate methods on DPDD dataset [2]. S denotes single-image defocus deblurring model. D denotes dual-pixel defocus deblurring. PSNR and SSIM scores are calculated on RGB channels.

Method	Indoor PSNR ↑		Outdoor PSNR ↑		Coml PSNR ↑	
EBDB _S [44]	25.77	0.772	21.25	0.599	23.45	0.683
$DMENet_S$ [46]	25.50	0.788	21.43	0.644	23.41	0.714
JNB _S [87]	26.73	0.828	21.10	0.608	23.84	0.715
DPDNet _S [2]	26.54	0.816	22.25	0.682	24.34	0.747
$KPAC_S$ [88]	27.97	0.852	22.62	0.701	25.22	0.774
IFAN $_S$ [47]	28.11	0.861	22.76	0.720	25.37	0.789
Restormer _S [114]	28.87	0.882	23.24	0.743	25.98	0.811
\mathbf{Ours}_S	29.11	0.889	23.35	0.748	26.15	0.817
DPDNet _D [2]	27.48	0.849	22.90	0.726	25.13	0.786
$RDPD_D$ [3]	28.10	0.843	22.82	0.704	25.39	0.772
Uformer _{D} [95]	28.23	0.860	23.10	0.728	25.65	0.795
IFAN $_D$ [47]	28.66	0.868	23.46	0.743	25.99	0.804
Restormer _D [114] \mathbf{Ours}_D	29.48 29.62	0.895 0.899	23.97 24.16	0.773 0.775	26.66 26.82	0.833 0.835

Table 4. <u>Image dehazing results</u>. We separately train and evaluate our method indoor scene and outdoor scene. PSNR and SSIM scores are calculated on RGB-channels.

Method	SOTS-In	ndoor [50]	SOTS-O	utdoor [50]
Metnoa	PSNR↑	SSIM↑	PSNR↑	SSIM↑
DehazeNet [9]	19.82	0.821	24.75	0.927
AOD-Net [48]	20.51	0.861	24.14	0.920
GridDehazeNet [61]	32.16	0.984	30.86	0.982
MSBDN [26]	33.67	0.985	33.48	0.982
FFA-Net [75]	36.39	0.989	33.57	0.984
ACER-Net [97]	37.17	0.990	-	
DeHamer [37]	36.63	0.988	35.18	0.986
MAXIM-2S [92]	38.11	0.991	34.19	0.985
PMNet [105]	38.41	0.990	34.74	0.985
DehazeFormer-L [90]	40.05	0.996	-	-
SFNet [20]	41.24	0.996	40.05	0.996
Ours	41.48	0.996	40.29	0.996

Table 6. Grayscale image denoising on Gaussian noise. Upper-bracket: models are trained on a range of noise levels. Lower-bracket: models are trained on the fixed noise level.

	Se	t12 [1]	[8]	BS	SD68 [55]	Urb	an100	[40]
Method	$\sigma=15$	$\sigma=25$	$\sigma=50$	$\sigma=15$	σ =25	$\sigma=50$	$\sigma=15$	σ =25	$\sigma=50$
DnCNN [118]	32.67	30.35	27.18	31.62	29.16	26.23	32.28	29.80	26.35
FFDNet [120]	32.75	30.43	27.32	31.63	29.19	26.29	32.40	29.90	26.50
IRCNN [119]	32.76	30.37	27.12	31.63	29.15	26.19	32.46	29.80	26.22
DRUNet [122]	33.25	30.94	27.90	31.91	29.48	26.59	33.44	31.11	27.96
Restormer[114]	33.35	31.04	28.01	31.95	29.51	26.62	33.67	31.39	28.33
Ours	33.35	31.30	28.13	31.98	29.58	26.77	33.62	31.47	28.46
FOCNet [41]	33.07	30.73	27.68	31.83	29.38	26.50	33.15	30.64	27.40
MWCNN [60]	33.15	30.79	27.74	31 86	29.41	26.53	33.17	30.66	27.42
									21.42
NLRN [59]		30.80							
NLRN [59] RNAN [125]				31.88	29.41		33.45		
	33.16		27.64 27.70	31.88	29.41	26.47 26.48	33.45	30.94	27.49 27.65
RNAN [125]	33.16	30.80	27.64 27.70 27.74	31.88 - 31.91	29.41 - 29.44	26.47 26.48 26.54	33.45 - 33.37	30.94	27.49 27.65 27.53
RNAN [125] DeamNet [79]	33.16 33.19 33.28	30.80	27.64 27.70 27.74 27.81	31.88 - 31.91 31.93	29.41 29.44 29.46	26.47 26.48 26.54 26.51	33.45 - 33.37 33.79	30.94 - 30.85 31.39	27.49 27.65 27.53 27.97
RNAN [125] DeamNet [79] DAGL [67]	33.19 33.28 33.36	30.80 30.81 30.93 31.01	27.64 27.70 27.74 27.81 27.91	31.88 - 31.91 31.93 31.97	29.41 29.44 29.46 29.50	26.47 26.48 26.54 26.51 26.58	33.45 - 33.37 33.79 33.70	30.94 30.85 31.39 31.30	27.49 27.65 27.53 27.97 27.98

Table 5. Image deraining results. We separately train and evaluate our method on Rain200H, Rain200L, DID-Data, and DDN-Data. PSNR and SSIM scores are calculated on Y channel in YCbCr color space.

Method	Rain200 PSNR↑	OL [<u>104]</u> SSIM↑	Rain200 PSNR↑	OH [<u>104]</u> SSIM↑	DID-D a PSNR↑	ta [<u>115]</u> SSIM↑	DDN-D PSNR↑	ata [<u>30]</u> SSIM↑
DDN [29]	34.68	0.967	26.05	0.805	30.97	0.911	30.00	0.904
RESCAN [54]	36.09	0.967	26.75	0.835	33.38	0.941	31.94	0.935
PReNet [80]	37.80	0.981	29.04	0.899	33.17	0.948	32.60	0.946
MSPFN [42]	38.53	0.983	29.36	0.903	33.72	0.955	32.99	0.933
RCDNet [93]	39.17	0.989	30.24	0.904	34.08	0.953	33.04	0.947
MPRNet [113]	39.47	0.982	30.67	0.911	33.99	0.959	33.10	0.935
DualGCN [31]	40.73	0.989	31.15	0.912	34.37	0.962	33.01	0.949
SPDNet [106]	40.50	0.988	31.28	0.920	34.57	0.956	33.15	0.946
Uformer [95]	40.20	0.986	30.80	0.910	35.02	0.962	33.95	0.955
Restormer [114]	40.99	0.989	32.00	0.932	35.29	0.964	34.20	0.957
IDT [100]	40.74	0.988	32.10	0.934	34.89	0.962	33.84	0.955
DRSformer [17]		0.989	32.16	0.933	35.24	0.962	34.23	0.955
Ours	41.59	0.990	31.97	0.931	35.46	0.964	34.57	0.958

Table 7. Color image denoising on Gaussian noise. Upper-bracket: models are trained on a range of noise levels. Lower-bracket: models are trained on the fixed noise level. PSNR is calculated on RGB channels.

	СВ	SD68	[66]	l k	odak2	4	McN	Iaster	[123]	Urb	an100	[40]
Method	$\sigma=15$	σ =25	$\sigma=50$	$\sigma=15$	σ =25	σ =50	$\sigma=15$	σ =25	$\sigma=50$	$\sigma=15$	σ =25	$\sigma=50$
IRCNN [119]	33.86	31.16	27.86	34.69	32.18	28.93	34.58	32.18	28.91	33.78	31.20	27.70
FFDNet [120]	33.87	31.21	27.96	34.63	32.13	28.98	34.66	32.35	29.18	33.83	31.40	28.05
DnCNN [118]	33.90	31.24	27.95	34.60	32.14	28.95	33.45	31.52	28.62	32.98	30.81	27.59
DSNet [72]	33.91	31.28	28.05	34.63	32.16	29.05	34.67	32.40	29.28	1-	- 1	-
DRUNet [122]	34.30	31.69	28.51	35.31	32.89	29.86	35.40	33.14	30.08	34.81	32.60	29.61
Restormer [114]	34.39	31.78	28.59	35.44	33.02	30.00	35.55	33.31	30.29	35.06	32.91	30.02
Ours	34.37	31.87	28.68	35.52	33.13	30.15	35.62	33.38	30.40	35.03	32.97	30.19
RPCNN [99]	-	31.24	28.06		32.34	29.25	-	32.33	29.33	-	31.81	28.62
BRDNet [91]	34.10	31.43	28.16	34.88	32.41	29.22	35.08	32.75	29.52	34.42	31.99	28.56
RNAN [125]	-		28.27	-		29.58	100	-	29.72	-	-	29.08
RDN [126]	-	-	28.31	-	-	29.66	-	-	-	-	-	29.38
IPT [13]	-	-	28.39	-	-	29.64	-	-	29.98	-	-	29.71
SwinIR [57]	34.42	31.78	28.56	35.34	32.89	29.79	35.61	33.20	30.22	35.13	32.90	29.82
Restormer [114]	34.40	31.79	28.60	35.47	33.04	30.01	35.61	33.34	30.30	35.13	32.96	30.02
Ours	34.48	31.97	28.83	35.58	33.21	30.23	35.75	33.56	30.46	35.11	33.13	30.27

Ablation Studies (for deblurring task)

Table 9. Effect of condition information.

Method	baseline	N=5	N=10	N=20	N=30	N=40
PSNR†	30.16 0.932	31.13	31.36	31.57	31.51	31.60
SSIM↑	0.932	0.941	0.945	0.947	0.947	0.948

N: text descriptions' length

Table 10. Effect of integration strategy.

Method	baseline	Enc.	Dec.	Enc. & Dec.
PSNR↑	30.16 0.932	31.37	30.31	31.57
SSIM↑	0.932	0.946	0.934	0.947

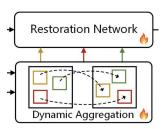
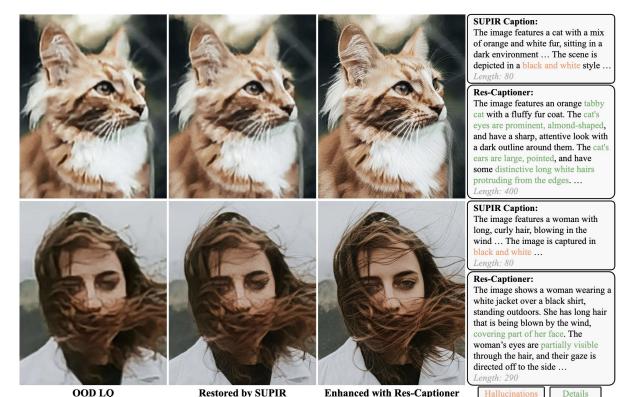


Table 11. Effect of generated guidance.

Method	baseline	Degra.	Ours
PSNR↑	30.16	30.13	31.57
SSIM↑	0.932	0.931	0.947

Degra: guided restoration by degraded input

Beyond Pixels: Text Enhances Generalization in Real-World Image Restoration



ComputerVisionLab Seoul National Universit

Motivation - domain invariant feature

$$\boldsymbol{x} = \mathcal{R}(\boldsymbol{x}_{lq})$$
 x : high-quality image, x_{lq} : low-quality image

• Need cross-domain invariant feature **z**

$$oldsymbol{z} = \mathcal{G}(oldsymbol{x}_{lq}) \quad oldsymbol{x} \, = \, \mathcal{H}(oldsymbol{z})$$

• Propose content-related image caption as domain invariant feature

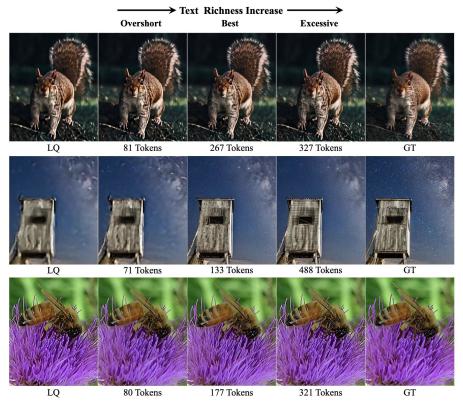
$$oldsymbol{y} = \mathcal{C}(oldsymbol{x}_{lq}) \quad \mathcal{C}: ext{image captioner}$$

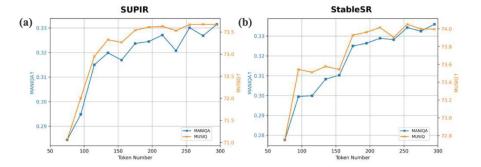
$$\boldsymbol{y}_{cont} = \{w \mid w \in \boldsymbol{y}, w \notin \boldsymbol{y}_{deg}\}$$

 y_{deg} : degardation related caption, y_{cont} : content related caption

$$m{x} = \mathcal{R}(m{x}_{lq}, m{y}_{cont})$$

Observation 1. The richness of restored textures and details increases proportionally with the text richness.





Observation 2. The optimal level of text richness is influenced by degradation severity and image content.

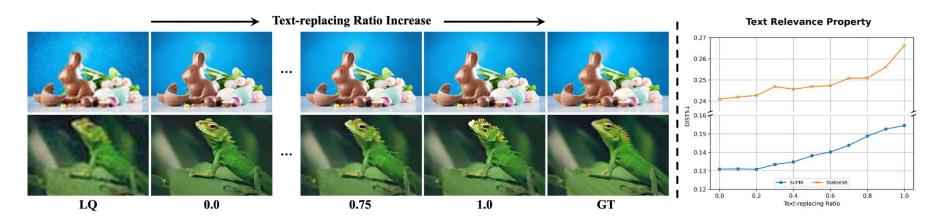
327 Tokens

267 Tokens

Best Excessive (c) 0.42 0.20 0.12

Other observations

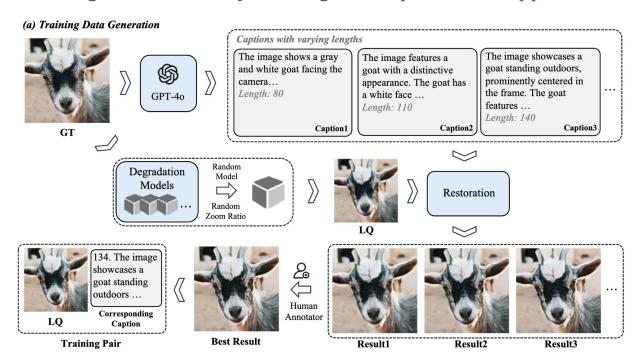
• Observation 3. The fidelity of restored textures improves incorrelation with the relevance of the text description.



• Observation 4. Descriptions related to degradation or photography can lead to blurring in the restored images.

Method

• Goal: Training "Res-captioner" that can generate text descriptions of an appropriate length and accuracy, serving as a caption that supports robust restoration.

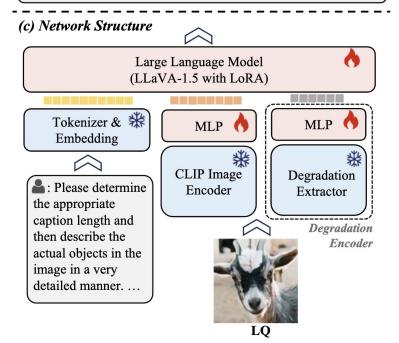


5,500 LQ image-caption pairs for training Res-Captioner.

Method

(b) Chain-of-Thought Captioning

♣: Please determine the appropriate caption length and then describe the actual objects in the image in a very detailed manner.
★: 134. The image showcases a goat standing outdoors, prominently centered in the frame. The goat features ...
Token Number Prediction + Adaptive Length Caption

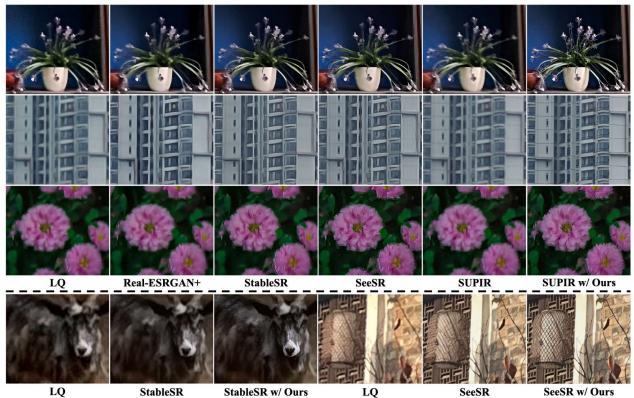


Methods		Real	R (Came	ras)		RealIR (Internet)					
Wellous	MUSIQ↑	MANIQA†	LIQE↑	NIQE↓	CLIP-IQA↑	MUSIQ↑	MANIQA†	LIQE↑	NIQE↓	CLIP-IQA↑	
Real-ESRGAN+ [58]	58.54	0.1784	2.425	5.049	0.4900	58.34	0.2048	2.157	5.646	0.4458	
DASR [31]	53.82	0.1487	2.208	6.038	0.4045	50.84	0.1397	1.594	6.748	0.3290	
CoSeR [50]	56.91	0.1163	2.597	4.766	0.4789	66.67	0.1842	3.822	4.042	0.5831	
SeeSR [62]	70.19	0.2138	3.768	3.705	0.6401	72.65	0.2694	4.243	3.749	0.6706	
StableSR [55]	66.15	0.1924	3.466	4.208	0.6345	67.66	0.2012	3.913	4.033	0.6400	
StableSR w/ Ours	69.28	0.2389	3.693	3.891	0.6956	71.64	0.2690	4.279	3.784	0.7031	
SUPIR [68]	60.43	0.1651	2.983	4.213	0.4793	71.94	0.2727	4.425	3.492	0.6362	
SUPIR w/ Ours	71.38	0.2543	4.056	3.454	0.6235	73.26	0.3055	4.578	3.389	0.6749	

Table 1. Quantitative comparisons on our RealIR benchmark. We highlight best values and results of Res-Captioner-enhanced models .

Methods	Light Degradation					Moderate Degradation				Heavy Degradation			
	DISTS↓	LPIPS↓	MANIQA [†]	LIQE↑	DISTS↓	LPIPS↓	MANIQA↑	LIQE↑	DISTS↓	LPIPS↓	MANIQA†	LIQE↑	
StableSR	0.1791	0.3311	0.2256	3.699	0.1864	0.3209	0.2297	3.603	0.2181	0.4008	0.1676	3.047	
C4-1-1-CD/ O	0.1748	0.3271	0.2712	3.733	0.1774	0.3121	0.2614	3.872	0.1993	0.3883	0.2298	3.502	
StableSR w/ Ours	2.4%	1.2%	20.2%	0.9%	4.8%	2.7%	13.8%	7.5%	8.6%	3.1%	37.1%	14.9%	
SUPIR	0.1821	0.3444	0.2042	3.148	0.1883	0.3473	0.2182	3.349	0.2159	0.4106	0.1749	2.840	
CLIDID/ O	0.1680	0.3178	0.3065	4.011	0.1621	0.3052	0.3294	4.226	0.1873	0.3754	0.3033	3.991	
SUPIR w/ Ours	7.7%	7.7%	50.0%	27.4%	13.9%	12.1%	51.0%	26.2%	13.3%	8.6%	73.4%	40.5%	

Table 2. Quantitative comparisons between the official model and the Res-Captioner-enhanced model under different degradation levels. We show the improvement percentage on each metric.



Method	Light Degradation		Moderate Degradation		Heavy Degradation	
	DISTS↓	LPIPS↓	DISTS↓	LPIPS↓	DISTS↓	LPIPS↓
Ours	0.1680	0.3178	0.1621	0.3052	0.1873	0.3754
w/ Min Len.	0.1718	0.3274	0.1753	0.3252	0.2033	0.4009
w/ Max Len.	0.1864	0.3525	0.1770	0.3184	0.1964	0.4039
w/ Low Rel.	0.1738	0.3389	0.1655	0.3061	0.1907	0.3914
w/ Harmful Des.	0.1686	0.3191	0.1678	0.3178	0.1868	0.3883

Table 4. Ablation studies on text richness, relevance, and harmful descriptions. We highlight **best** values for each metric.

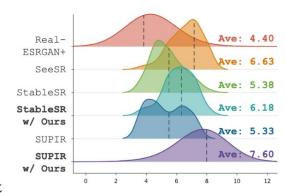


Figure 7. User study.

CoT captioning and degradation-aware visual encoder.

E: Offset level,

L0 : optimal length annotated by human,

L : output length of Res-captioner (using RealIR dataset)

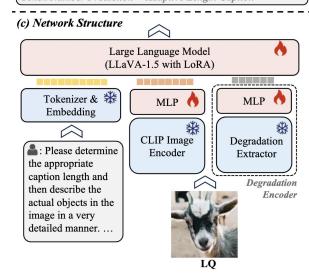
$$E = \max(|L_o - L| - 15, 0)/30$$

E = 1.27 for RealIR dataset (Out-of-distirbution samples)

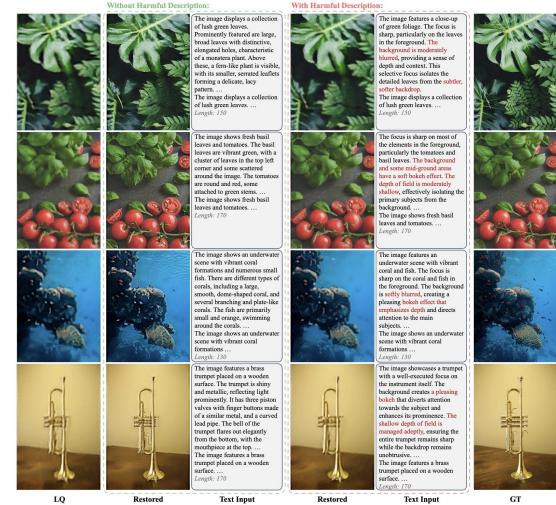
- 66.7% increase without CoT captioning
- 31.5% increase without degradation aware visual encoder

(b) Chain-of-Thought Captioning

♣: Please determine the appropriate caption length and then describe the actual objects in the image in a very detailed manner.
★: 134. The image showcases a goat standing outdoors, prominently centered in the frame. The goat features...
Token Number Prediction + Adaptive Length Caption



Effect of Harmful Description



ComputerVisionLab

Figure A.8. Harmful descriptions to the image restoration.

Qualitative results

(a) Additional qualitative comparisons of Res-Captioner applied to StableSR on in-the-wild images.

(b) Qualitative comparisons of Res-Captioner on de-hazing and de-snowing.

Conclusion

• Low-level vision can also benefit from LLM or VLM improvement

 Importance of methods for achieving scalable performance increases with LLM or VLM

Thank you!

